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GENETIC ALGORITHM APPLIED TO LEAST SQUARES CURVE FITTING 

By C. L. Karr,1 D. A. Stanley,2 and B. J. Scheiner3 

ABSTRACT 

The U.S. Bureau of Mines is currently investigating the use of genetic algorithms (GA's) for solving 
optimization problems. This computer search technique, based on the mechanics of natural genetics, 
was used to perform simple least squares curve fitting. Three examples are presented in which a GA 
manipulates binary coded strings to produce near-optimal solutions to least squares curve-fitting 
problems after having viewed only a small portion of the search space. The examples include fitting data 
to the equation of a line, the equation of a parabola, and the Ree-Eyring equation. 

lMechanical engineer. 
2SUpe1Visory rcsearcb chemist. 
3S11pervisory metallurgist. 
Tuscaloosa Research Center, U.S. Bureau of Mines, Tuscaloosa, AL. 
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INTRODUCTION 

Curve fitting plays an important role in the analysis, 
interpretation, and correlation of experimental data. Al­
though there are many approaches to curve fitting, the 
method of least squares can be applied directly to prob­
lems involving linear forms with undetermined constants. 
However, the conventional least squares method of curve 
fitting does have limitations; nonlinear forms and forms for 
which no derivative information exists present problems. 
These limitations may be overcome by incorporating a 
GA. 

GA's are search algorithms based on the mechanics of 
natural genetics (6).4 They efficiently exploit old knowl­
edge contained in a population of solutious to generate 

new and improved solutions. GA's have been used in a 
variety of problems (1-2, 4-5, 7) where they have been 
shown to converge rapidly to near-optimal solutions after 
having sampled but a small fraction of the search space. 

In this U.S. Bureau of Mines report, a simple GA is 
applied to three least squares curve-fitting problems. 
Although the problems have been effectively solved using 
more conventional techniques, they serve as a useful check 
on the principle of using a GA for solving curve-fitting 
problems. Furthermore, the method of curve fitting data 
using a GA is easily extended to more complex prob­
lems that are difficult for the conventional least squares 
technique. 

HOW GENETIC ALGORITHMS ARE DIFFERENT 

GA's are broadly applicable, efficient search algorithms 
based on the mechanics of natural genetics. They imitate 
nature with their Darwinian survival-of-the-fittest ap­
proach. This approach allows GA's to speculate on new 
points in the search space with expected improved 
performance by exploiting historical information. Because 
GA's imitate nature, they exhibit some fundamental 
differences from more conventional search techniques. 
GA's differ from more conventional search techniques in 
three ways: 

1. GA's work with bit strings that represent entire 
parameter sets, whereas most methods manipulate indi­
vidual parameters independently. 

2. GA's consider many points in the search space in 
each iteration. 

3. GA's use random choice to guide their search for 
which they require no derivative information. 

GA's require the natural parameter set of the problem 
to be coded as a foote string of bits. The parameter sets 
in this study are coded as strings of zeros and ones. For 
example, the two constants needed to defme a line of the 
form y = Clx + C2 are quite easily represented as a binary 
string. Eleven bits are allotted for defming each constant. 
The first bit position is devoted to the sign of Cl; i.e., 
when the value is zero Cl is positive, and when the value 
is one Cl is negative. The next 10 bits, positions 2 through 
11, are interpreted as a binary number (1001010111 is the 
binary nnmber 599). This value is mapped linearly 

4Italic numbers in parentheses refer to items in the list of references 
at the end of this report. 

between some user-determined minimum (C~ and maxi­
mum (C~ values according to the following: 

binrep 
C1 .. Cmin +:e (Cmax - Cmin ), (1) 

(2 - 1) 

where binrep = the integer value represented by an .e bit 
string. The values of Cmax and Cmln in a given problem are 
selected by the user based on personal knowledge of the 
problem. If necessary, a rapidly converging, course opti­
mization method may be used for selecting the limiting 
values. This same form is used to represent C2, and the 
two 11-bit strings are concatenated to form a single 22-bit 
string representing the entire parameter set (Cl and CJ. 
In other problems, the creation of appropriate foote string 
codings may require more complicated mappings, but with, 
a little creativity the possibilities are endless. 

Since GA's work directly with a coding of the param­
eter set and not the parameters themselves, they are dif­
ficult to fool because they are uot dependent upon con­
tinuity of the parameter space. GA's consider many points 
in the search space simultaneously and therefore have a 
reduced chance of converging to local maximums. In most 
conventional search techniques, a decision rule governs the 
movement from one point to the next. These methods can 
be dangerous in multimodal (many peaked) search spaces 
because they can converge to local maximums. However, 
GA's generate entire populations of points (coded strings), 
test each point individually, and combine qualities from 
existing points to form a new population containing im· 
proved points. Aside from producing a more global 
search, tbe GA's simultaneous consideration of many 



points makes them highly adaptable to parallel machines 
since the evaluation of each point is an independent 
process. 

A GA requires only information concerning the quality 
of the solution produced by each parameter set (objective 
function values). This is contrary to many optimization 
methods that require derivative information or, worse yet, 
complete knowledge of the problem structure and param­
eters. Since GA's do not require such problem-specific 
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information, they are more flexible than most search 
methods. 

Last, GA's differ from more typical search techniques 
in that they use random choice to guide lneir search. Al­
though chance is used to derme their decision rules, GA's 
are not random walks through the search space. They use 
chance efficiently in their exploitation of prior knowledge 
to rapidly locate near-optimal solutions. 

SIMPLE GENETIC ALGORITHM 

Although some GA's have become quite complex, good 
results can be rapidly achieved with relatively simple GA's. 
The simple GA used in this study consists solely of re~ 
production, crossover, and mutation-operations basic to 
all GA's. As will be seen, these operations are easily im­
plemented on a computer. 

Before examining the individual operations, consider the 
overall processing of a GA. An initial population of n 
strings each of length .e are generated at random. Keep 
in mind that each string represents one possible solution 
to the problem at hand, one possible combination of the 
input parameters. Each string is decoded yielding the 
actual parameters. The parameter set represented by each 
string is, sent to a numerical model of the problem, a 
solution based on the input parameters is returned, and 
the string is assigned a fitness value, which is simply a 
nonnegative measure of the quality of the string's solution. 
The assignment of fitness values is problem dependent; 
they are dermed by the user to represent the quality of a 
string. This fitness is then used to direct the application 
of the three operations, which produce a new population 
of strings (a new generation). Hopefully, this new 
generation will contain better solutions to the problem. 
The new population of strings is again individually de­
coded, evaluated, and transformed into a subsequent gen­
eration using the basic operations. This relatively simple 
process continues until convergence within a population is 
achieved. 

Reproduction is simply a process by which strings with 
large fitness values, good solutions to the problem at hand, 
receive correspondingly many copies in the new popula­
tion. In this study, use is made of a particular type of 
reproduction, expected number control. This form of 
reproduction makes a certain number of copies, num!, of 
a string in accordance with the equation: 

(2) 

where numj = the number of copies of the string in the 
next generation, 

and 

4 the fitness of the individual string in the 
current generation, 

the average fitness of the current 
generation. 

(A mechanism for handling roundoff and assuring a con­
stant population size is required.) Thus, reproduction is 
the survival-of-the-fittest aspect of the GA. The best 
strings receive more copies in subsequent generations so 
that their desirable traits may be passed onto their 
offspring. 

Crossover affords a means for strings to mix and match 
their desirable qUalities through a random process. After 
reproduction, simple crossover proceeds in three steps. 
First, two newly reproduced strings are selected from the 
strings created by previous selection. Second, a position 
along the string is selected at random. This is shown as 
follows, where two binary coded strings X and Y of length 
six are nested for crossover: 

X=1101101 
Y=OOlI011. 

Notice how crossing site 3 has been selected in this partic­
ular example through random choice, although any of the 
other four positions could have been selected just as easily. 
The third step is to exchange all characters following the 
crossing site. The two new strings following this example 
cross are shown X' and Y': 

X'=110011 
Y'=OOl101. 

String X' is made up of the first part of string X and the 
tail of string Y. Likewise, string Y' is made up of the first 
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part of string Y and the tail of string X. Although 
crossover has a random element, it should not be thought 
of as a random walk through the search space. It is an 
effective means of exchanging information and combining 
portions of high-quality solutions. 

The mechanics of the reproduction and crossover opera­
tions are quite simple; they involve nothing more than 
making copies of strings and exchanging portions of 
strings. However, reproduction and crossover together 
give GA's much of their power. 

Reproduction and crossover give GA's the majority of 
their searching power, but the third operation, mutation, 
enhances the ability of the GA to fmd near-optimal solu­
tions. Mutation is the occasional alteration of a value at 
a particular string position. Its purpose is to serve as an 
insurance policy; it insures against the loss of a particular 
piece of information. A generation may be created that is 

void of a particular character at a given string position. 
For example, a generation may exist that does not have a 
one in the third string position when a one at the third 
position may be critical to obtaining a quality solution. 
Neither reproduction nor crossover will ever produce a 
one in this third position in subsequent generations. Mu­
tation, however, allows for the possibility of a zero in the 
third position to be changed to a one. Thus, the critical 
piece of information can be reinstated into the population. 
Although mutation is a vital part of any GA, it occurs with 
a small probability (on the order of one mutation per 
thousand string positions). 

This has been a brief overview of a simple GA. For 
details of the processing power and the convergence 
properties of GA's, reference should be made to Holland 
(6). 

GENETIC ALGORITHM APPLIED TO LEAST SQUARES CURVE-FITTING PROBLEMS 

In this section, a simple GA is used to solve three least 
squares curve-fitting problems. Although the problems 
investigated have been well solved by other methods, they 
serve as a demonstration of the GA's versatility and power 
in the area of curve fitting data. 

Three examples are presented in which results pro­
duced by the GA are compared with the optimum results 
of the conventional calculus based least-squares technique. 
The first example is a line of the form y = C1x + C2• This 
is a simple example presented to illustrate the basic 
premise of using a GA for curve fitting. The second and 
third examples are more complex problems that are of 
immediate interest to the Bureau. In the second example, 
data is fitted to an equation of the form 

(3) 

In this equation, 

A = the amount of polymer required 
for dewatering (8) (the dependent 
variable), 

C = the polymer concentration (the in­
dependent variable), 

C1 an undetermined constant which 
causes the curve to be linear, 

and Cz and C3 = constants defining the line. 

The third example involves fitting data to an equation of 
the form y = C1 + C2sinh-1(C;x) / (C;x). This form was 
selected because fitting data to this equation allows for the 
solution of the Ree-Eyring equation, which is used to esti­
mate non-Newtonian viscosity components. These three 
problems by no· means represent all the existing curve 
fitting problems, but they are exemplary of problems com­
monly faced in data handling. 

PRELIMINARY CONSIDERATIONS 

Before considering the three specific problems, two 
points concerning the application of the GA must be ad­
dressed. There are basically two decisions to be made. 
when applying a GA to any given problem: (1) how to 
code the parameters of the problem as a finite string, and 
(2) how to evaluate the merit of each string (each param­
eter set). 

The method for coding the strings has been discussed 
previously, so consider the question of how to evaluate 
each string. In least squares curve-fitting problems, the 
objective is to minimize the sum of the squares of the 
distances between a curve of a given form and the data 
points. Thus, if y is the ordinate of one of the data points, 
and y' is the ordinate of the corresponding point on the 
theoretical curve, the objective of least squares curve fit­
ting is to make (y - y')2 a minimum. This square of the 
error, which is to be minimized, affords a good measure of 
the quality of the solution. However, the GA seeks to 
maximize the fitness. Thus, the minimization problem 
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must be transformed into a maximization problem. To 15 r;-----;--;--,-----r----r---.--~ 

accomplish this transformation, the error is simply sub­
tracted from a large positive constant (Const) so that 

f = Const _ (y _ y')2 

yields a maximization problem. 

(4) 

The selection of an appropriate coding and the deter­
mination of a fitness representation are the only aspects of 
a GA that are problem specific. Once these two decisions 
have been made, every problem is the same to a GA. The 
GA generates populations of strings, evaluates them, and 
uses these evaluations to produce subsequent generations 
of more highly fit strings. Thus, the GA is a very flexible 
search method. 

The simple GA described earlier has been programmed 
in the Pascal programming language by modifying the code 
found in Goldberg (3). The GA is run in these studies 
with the following parameters: 

popsize == 100 

P crossover == 0.65 

1 
P tat' = ---:--mu Ion popsize . 

These values are consistent with De Jongs suggestions (1) 
for moderate population size, high crossovel' probability, 
and low mutation probability. 

EXAMPLE 1-UNE 

This problem involves the fitting of data to a line having 
the form y = Clx + C2• Both C1 and C2 must be selected 
to minimize the square of the distance between the points 
and the curve. Six data points were selected to be fitted 
and are as follows: 

x 
o 
1 
2 
3 
4 

10 

y 

o 
1 
2 
3 
4 

10 

These points fall directly on the straight line rep­
resented by the constants C1 = 1 and C = O. These values 
are readily found using the conventional least squares 
technique. 

Figure 1 shows the best -of-generation error for two 
independent ruWl (different "~tu.g populatioti are 

0:: 
o 
0:: 
0:: 
W 

10 

5 

2 3 4 5 6 
GENERATION 

Figure 1.-Best-of-generatlon error versus generation number 
for example 1. 

provided because results depend on a random seed) as it 
decreases with successive generations. Recall that each 
generation represents the creation of n == 100 strings 
where n '" P crossover = 100 '" 0.65 == 65 of the strings are 
new. It is interesting that near-optimal results are ob­
tained after only six generations (approximately 400 new 
function evaluations). 

For this example of fitting the data to the equation of 
a line, near-optimal results are obtained even though the 
size of the search space is large (222 = 4.2 x 1()6 points), 
and the number of points explored is small (400). This 
is exactly the type of performance the GA gives; it finds 
near-optimal solutions after having viewed only small 
portions of the search space. 

To get a feel for the results produced by the GA, 
consider the best solution from run 2. These results are 
compared with the optimum results as found using a con­
ventionalleast squares curve-fitting technique in figure 2. 
The constants selected by the GA were C1 = 0.9688 and 
c;, == 0, which produced a squared error of 0.127 versus 
the optimum value of O. C1 and C2 were allowed to vary 
from -32.0 to 32.0. 

EXAMPLE 2-POLYMER REQUIRED 
FOR DEWATERING VERSUS 

CONCENTRATION 

The Bureau is investigating a method of dewatering 
flocculated fine-particle waste that involves treating the 
waste with a high-molecular-weight polymer such as 
polyethylene oxide (PEO). StauIey and Scheiner (9) found 
an empirical relationship between the amount of polymer 
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required for dewatering the clay and the polymer con­
centration. The equation is of the form 

where 

c 
A 1 = C;C + C3, (5) 

A = amount of polymer (PEO) required 
in gram per kilogram of clay to de­
water a particular clay (the de­
pendent variable), 

C = concentration, in weight percent, of 
the polymer solution used for 
dewatering (the' independent 
variable), 

C1 = constant that determines the curva­
ture of the plot, 

and C2 and Ca = constants deflning the line. 

To establish the correlation, A is raised to the C1 power 
and plotted versus C. This is illustrated for an unex­
changed attapulgite clay dewatered with 0.05 pct PEO 
solution. The data points are plotted for values of C1 of 
1.7,2.1, and 2.5 as shown in flgure 3. A unique straight 
line is obtained as C1 approaches 2.1. Prior to this study, 
the selection of the constants had been a trial-and-error 
process. The use of a GA in fltting data to an equation of 
the given form shows its effectiveness in solving complex 
curve-fltting problems. 

The addition of a third constant makes this example 
more difficult than the line because the size of the search 
space has increased signiflcantly (from 222 to 233 points). 
Parameter sets are coded in the same manner as those of 

10,------,------,------,-- ---,------~ 

8 

2 

KEY 

--~ Least squares 
"",,, GA 

2 4 6 
DATA POINT X 

8 

Figure 2.-GA-predlcted curve fit for example 1. 
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the line, except the strings representing the parameters 
now have a length of 33; the flrst 11 bits represent Cl • the 
second 11 bits represent C2> and the third 11 bits represent 
Ca. The constants are once again determined based on the 
minimization of the square of the distance between the 
points and the curve. Cl> C2> and Ca ranged from -32.0 to 
32.0. 

Three data points were fltted for each of two clays: 
aluminum-exchanged and potassium-exchanged clays. Fig­
ure 4 shows the best-of-generation error for two independ­
ent runs as it decreases with successive generations. As in 
the previous example, the results of the GA quickly 
converge to near-optimal solutions. The results produced 
by the GA are compared with those of Stanley and 
Scheiner's (9) trial-and-error method in flgure 5. The 
constants produced by the GA are compared with those of 
Stanley and Scheiner in table 1. 

,.---, 

~ '-" 1. 6 

Cl 
W 
0:: 1.2 
:J 
a 
w 
0:: .8 

0:: 
w 
:.:ii :J .4 
o 
£L 

c, = 2.1 
C2 = 2.5 
C3 = 1.7 

0.1 0.2 0.3 
PEO CONCENTRATION, pet 

Figure 3.-Trlal-and.error process. 

25,-----------,-----------,----------. 

0:: 15 
o 
0:: 
0:: 
W 10 

5 

KEY 

Run 1 
Run 2 

5 10 
GENERATION 

15 

Figure 4.-Best-of-generatlon error versus generation number 
for example 2. 



Table 1.-COmparlson of trlal-and-error 
and GA constants 

Trial and error (9): 
Cl .... • ........ · 

C2 .. • .. • ...... .. 
~ ............. . 

GA: 
Cl .......... • .. • 

C2 ........ • .... . 

C3 .. • .. • .... • .. . 

1.40 
16.39 
o 

1.40 
16.280 

-.031 

2.00 
7.20 
o 

2.00 
7.063 

.031 

EXAMPLE 3-REE-EYRING EQUATION 

The Ree-Eyring equation allows for the estimation of 
the non-Newtonian components of viscosity and is of 
interest to the Bureau in the area of dewatering phos­
phatic clay wastes. The Ree-Eyring equation may be 
written as 

where 

(6) 

y = the viscosity (the dependent 
variable), 

x the shear rate (the independent 
variable), 

and C1, Cz, and C3 = the constants to be determined. 

The process of fitting the data using a GA is the same 
as in the previons example. The parameter set (CI , C2> 
and ~) is again represented as a 33-bit string of zeros and 
ones and is determined by minimizing the square of the 
distance between the data points and the curve. 

Cl 3 
w 
0:: 

:J 

~2 
0:: 

0:: 

~1 
>­
-l 
o 
a. 

KEY 

• -~ K+ (Stanley) 
.......... K+ (GAl 

------- A1 3+ (Slanleyl 
• --~- A1 3+ (GAl 

O~ ____ ~······-·····~L---------__ L-__ ------~ 

0.1 0.2 0.3 

PEO CONCENTRATION, pet 

Figure 5.-GA-predlcted curve fit for example 2. 
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Stanley, Webb, and Scheiner (10) used a transformation 
method to solve the Ree-Eyring equation for a sodium 
ion-exchanged clay. The data used in that report were 
also used here, and the results of the curve produced using 
the GA are compared with those previously obtained. 
Once again the GA quickly converged to a quality solution. 
Figure 6 shows the best-of-generation error for two inde­
pendent runs as it decreases with successive generations. 
The smallest error produced by the GA calculated curve 
(1.57) is less than that of the curve calculated by the trans­
formation method used by Stanley, Webb, and Scheiner 
(12.55). Figure 7 shows how well the curve calculated by 
the GA (C1 = 168.83, C2 = 34.20, and ~ = 0.043) fits 
the data. Cl> C2, and ~ ranged between -200.0 and 200.0. 

600~------,--------.--------~------~ 

0:: 
o 

500 

400 

0:: 300 
0:: 
W 

200 

100 

KEY 

--~ Run 1 
............ Run 2 

-•••• -- Stanley 

ot====~========~~==~~===J 
5 10 15 20 

GENERATION 

Figure 6.-Best-of-generatlon error versus generation number 
for example 3. 

150~--· T----,----,----,-············-,~····--,_--_, 

a. 
(J 

/""', 

125 

>- 100 
"-./ 

>­
!::: 
g:; 75 
U 
(f) 

:> 
50 

25L---···L.·~--~---L----~··················~----~--~ 
4 8 12 16 20 24 28 

SHEAR RATE eX), 10-4 5-1 

Figure 7.-GA-predicted curve fit for example 3. 
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CONCLUSIONS 

Genetic algorithms are search algorithms that are able 
to locate near-optimal solutions after having sampled only 
small portions of the search space. They are flexible 
enough to be effective in a wide range of problems, well 
suited to parallel computers, and easily extended to 
multiple peak optimization problems. 

In this report, a simple GA made up of reproduction, 
crossover, and mutation was used to perform least squares 

curve fitting. Three curve-fitting problems were presented 
in which a GA rapidly converged to near-optimal solutions. 
The solutions were comparable to, or better than, solu­
tions determined by more commonly used methods. Al­
though they require some knowledge of the problem, GA's 
are readily adaptable to least squares curve-fitting 
problems. 
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